March 11th

March 11th.

My thoughts and prayers go to those who had lost their lives, who had lost loved ones and who had lost their homes by the earthquake, tsunami and nuclear power plant disaster in Japan.

This year will mark the anniversary of the Fukushima nuclear disaster and the 30th anniversary of the Chernobyl disaster. Do you remember the horrific pictures of the explosion at Fukushima Dai-ichi nuclear power plant? Trillions of becquerels of radiation have been diffused and contaminated water has been running into the Pacific Ocean. The government doesn’t know yet what to do with increasing radioactive waste and countless bags of decontamination waste are stored in eastern Japan.

Approximately 80,000 people still live in temporary housing as their homes remain uninhabitable due to radioactive contamination. Chernobyl proved that long-term exposure to even very low levels of radiation can cause health damage. In Germany eight reactors are still in operation and the recent accidents of Belgium’s aging nuclear plants worry neighboring countries. After Fukushima, Europe is now again faced with danger.

There is no official accusation of TEPCO, who is responsible for the accident. Without learning its lesson from the Fukushima disaster, the Japanese government is eager to restart nuclear power plants and has just restarted four reactors. Many of the Fukushima evacuees will have to choose to return home as the government will lift the evacuation order in 2017. This also means the government will no longer have to pay compensation to evacuees. Instead of securing continuous fair support for the evacuees, Japan is going to pour 1.8 trillion Yen (15 billion euros) into the Tokyo 2020 Olympic games. Not only that, Japan is selling nuclear technology to India, Turkey, and Vietnam and the major Japanese manufacturers of nuclear power plants are trying to make profits outside of Japan, together with European companies.


A voice from Fukushima (Interviewed Feb. 2016)

I fled from my home and am currently living 80km away from the nuclear power plant. We are facing a huge dilemma –  we will soon be forced to move out from our temporary housing. Due to political decisions we are being forced to return home, but I’m very concerned about radioactive exposure and I’m worried about whether we can earn enough money to live on. 

It makes me angry when I hear politicians discussing sending us back home. I think they are taking radiation issues too lightly! They decontaminated the residential areas and the government announced the lifting of the evacuation order because they said that the level of radiation has gone down. But do you think anyone wants to live in a place surrounded by bags of radioactive decontamination waste?

When Tokyo was selected for the 2020 Olympic games and Japan was full of excitement about that news, I felt that something was terribly wrong. I felt that the suffering and the pain of those who were affected was totally ignored and I felt hurt by the TV coverage that acted as though the nuclear accident never happened. I try not to think about the Olympics and I don’t want to watch the news because I believe it is manipulated.


We forget easily what we can’t see. But the invisible radiation continues threatening our planet and lives. Leaving a negative legacy of unsolved nuclear waste for future generations is no longer ethically permitted. Nuclear energy and human beings cannot co-exist as Chernobyl and Fukushima testified. The energy transition in Germany is not enough to solve global issues. Until all nuclear reactors are decommissioned and uranium mining is stopped worldwide, we will be faced with danger. If you feel that nuclear energy isn’t necessary, say it out loud! Every one of us is a part of political decision-making. You might think your voice won’t be heard, but all our voices together can make a difference.

Please join us at Kazaguruma Demo on 19th March in Berlin –  “Fukushima and Chernobyl urge Nuclear Phase-Out Worldwide!”


Learn more : 100 Good Reasons against nuclear power


Visiting a solar house (Effizienzhaus)

At February 1st, 2016, some of us visit to a solar house in Berlin, Fasanenstrasse. The minister of Environment, nature protection, construction, and reactor safety (Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit) built the house as an experiment of energy efficient house. The name of project is “Effizienzhaus Plus mit Elektromobilität.” This means efficient house plus with electric mobility.

They built 35 experimental houses in Germany. Each house has own outlook designed by different architect. The house in Berlin is shown in the picture. It has a modern cubic shape. But of course there are houses that outlook is a classic German house, too.

Berlin にある Effizienzhaus Plus
Effizienzhaus Plus in Berlin
Effizienzhaus Plus
An explanation session in a Effizienzhaus Plus

The house is called an efficient house however also “plus” is in a name. The goal of this house is to show “generating more energy than consuming it through a year.” This includes the energy of one electric car. In the experiment process, a few public offered families live in each house for a year. Two families lived in this house so far.

The house generates energy by solar panels and store it in the batteries. The architect puts the panels on the west and east side walls and the top of the house. It would be more efficient if the panel is at the south wall, however, a typical family consumes energy in the morning, the afternoon, and at night, but not in the noon time. If they use energy directly, it is more efficient. The south side has a large glass window to get the sun light. The architect made outside looking more important than the panels efficiency, so he has chosen a specific color panels but lower energy efficiency (10 to 15%).

Heating is the largest energy consuming component of typical house in Germany. Therefore most of the effort of saving energy is related with heating. In this house, the triple layer glass is used for the window. The ventilation system uses a heat exchange mechanism. The heating uses a heat-pump system. Efficient LED lights are used for the illumination. The wall is made of low thermal conductivity materials, yet the material is recycle friendly. All the house system is adapted to use electric energy, then the house doesn’t have other external dependency for energy.

Triple glass window panes with low heat transfer
Triple glass window panes with low heat transfer

The result of the first year did not generate all the energy they consumed. The house could only generate the energy consumed in the house, but not for the car. But this is an experiment. The researcher monitored the energy consumption details in the house and found the two unexpected behavior. One is the low efficiency of heat transfer system. It didn’t work as in the specification from the provided company. Thus, they exchange the device. The second problem was the energy consumption of the living room. This room was connected to the staircase and the heated air just ran away from this connection. So the architect put a glass door. The result of the second year (with the second family) was successful. The house generated the energy more than the family consumed including a car electricity. The architect thought that the motion sensor was good for saving energy for lights, but the first family had a cat. and they found out this was not so efficient.

It’s interesting for me that this house just lack of “one door” despite all the high technology for saving energy. The experience is useful. Another interesting issue in the report was about the mindset of the family. The family realized they don’t need to save energy, since the house generate it. So their mind set becomes a bit more extravagance about energy. I understand this, but is it a good for society at the end? I am not sure. This could be a question for the next experience. The architect prefers the fixed window, which you cannot open them, for the energy saving point of view. But, the family reported it is important to be able to open the window manually. It is also important for a house not only for the energy, but the house is the big place where the life is going on. So the house keeps the window that you can open them manually. All these results are published as following (online).

The following is my personal memo.

My first glance of this house was, “I don’t want to live in this house. It looks like a Borg cube!” But this is based on a specific architect and he has also limitation in design. The original plan was for three years experiment for this house and the architect can only use some limited technology. There are 35 different designs of the Effizienzhaus Plus. I found some houses attractive. But I like the inside design of this house.

My impression is that the technology is matured. This house was built at 2012. At that time, the German technology of this area was

Energy generation instead of energy saving

I first said about the design. This means that it is already not the technical issue even in my mind. I felt the design was important. I felt that the technology is matured. I recall when the five color iMac showed up in 1999. For me, the most important factor of a computer is performance, memory, and functionality. I thought “iMac? Power PC 750, 266MHz, sounds nice, but isn’t the main memory too small?” However, some of my friends told about iMac, “Which color did you buy?” I was shocked. Why color? Later I looked back that time, the computer becomes commodity. The design is very important if you put it in a house instead of an office. I understand when something became common in your life, the design matters.

The same as this house, the architect chose a specific solar panes color, and he has chosen a low efficiency panel (10-15% efficiency). He had chosen the design over the efficiency, yet to aim the primary goal. For the next generation solar panels, I think they need more colors. I already heard about such research for solar panels. The technology will create the solar panels of any colors, then we will not notice that is a solar panel one day. The design will be more important than the energy efficiency. If a house with green solar panels, you could not distinguish the house and the garden from the distance.

Other natural energy generators would go to such direction. For instance, a wind turbine would look not a wind turbine. One direction would be windmills in Netherlands, that made the scenery itself. Or a wind turbine looks like a tree. There is an vertical axis wind turbines. Maybe we could make a turbine that resembles a tree which fits in a forest. The wind turbine area becomes a park mixed the silent turbines and real trees. This is one direction of this technology. One day, we have a power plats that is a natural park. I imagine that kind of the future and I see it is good.

A trial to use sharing economy to promote green energy

What can we (citizens) do to promote green energy? I sometimes think about this. There are of course many ways. Today I will introduce one of the methods using sharing economy.

The sharing economy is a type of economy that people share the goods and services. People share: code for open source, auction places with eBay, cars with Uber, rooms with Airbnb and CouchSurfing, and so on. Sometimes it is over the range of sharing and cause troubles, but, this sharing economy is popular these days.

Can we use the idea of sharing economy for green energy? I live in an apartment. I don’t have a roof for solar panels. I don’t have a garden to put a small wind turbine. However, now we have the Internet. Can someone connect between who has a roof and who wants to invest solar panels?

Yeloha [1] is an U.S. start-up company for solar sharing network, founded April 2015. For example, anyone can borrow one solar panel per year for US $64. The generated electricity will be sold to the market and some percentage will be return to the investors. Was it a good investment? Well, it is not sure as the usual investment. However, I would like to invest the future of the green energy as a citizen and definitely this helps green energy industry. Yeloha has developed a special software, that can estimate how much electricity can be generated in a year depends on the location and the building[2].

I like this idea and business. I hope the similar sharing with wind turbine, bio-gas, and other green energies. I am looking forward to
seeing this kind of activity or company in Japan and Germany, too.

Today (2016-1-23(Sat)), we see the oil price is low. Some people think that “this is good, we can use oil.” But now is the time to invest to green energy since we can use lower price energy today to prepare for our future. The green energy is local and distributed, so its price can be stable and not global like the oil price. I believe oil price will raise one day, I don’t know when, but, I believe it definitely will. To prepare that day, I would like to invest to green energy now.


  1.  Yeloha,
  2. Lauren J. Young, Startup Profile: Yeloha Brings Solar Into the
    Sharing Economy,,
    IEEE Spectrum, Nov. 2015

Lecture by Former Prime Minister Naoto Kan: Crisis Management — Lessons Learned from the Threefold Catastrophe in March 20

Date: 2015-10-13 (Tue)
Venue: Heinrich Böll Foundation, Berlin

We had a lecture entitled “Crisis Management – Lessons Learned from the Threefold Catastrophe in March 2011” by Naoto Kan, former prime minister of Japan.

The hosts and German politicians started by introducing this lecture then explaining the current German situation. On German energy policy they mentioned the following:

  • Referring to Merkel’s Memorandum and her plan to replace all the German nuclear power plants with renewable energy, they said: “Concerning the fact that even one of the world’s leading technology countries like Japan has faced such a catastrophic accident, it makes sense for Germany to abandon its nuclear power plants.”
  • Compared to Germany, Japan has more natural energy. Japan can use wind energy, solar energy, and energy from biomass, but also geothermal and tidal energy. Moreover Japan has world class technology. The only missing piece would be the political decision.
Sylvia Kotting-Uhl, Grünen, atompolitische Sprecherin
Sylvia Kotting-Uhl, Grünen, atompolitische Sprecherin

Then, the organizer introduced Naoto Kan. The following is a summary of Kan’s lecture.

Just after the accident [March 11th, 2011], we found out there was no crisis management in Fukushima, because everything was built on the assumption that the atomic reactor was safe. Around March 22nd (2011), I asked a specialist to evaluate the worst-case scenario. He said that all the people who lived inside a circle of 250km radius from the reactors needed to be evacuated for a few decades. Tokyo lies within the circle. 50 million people would lose their home. I recognized that in fact the problem was, if Japan could continue existing. How could we manage 50 million refugees at once if the worst-case scenario happened?

At the early stage of the accident, both the government and TEPCO did not know what happened and could neither manage to circulate information about the accident. On the other hand, the plant manager called Yoshida improvised a new way to cool down the reactors because all the common methods had broken down. Japan was saved by mainly the people on the spot, including fire fighters, police, self defense forces and TEPCO workers. According to TEPCO, the melt down of nuclear fuel emits 70Sv/h radiation. The radiation can kill a nearby person within five minutes. The containment vessel was damaged due to the high pressure, but it only had holes. Therefore, fortunately, this fuel was not dispersed into the air, but melt down into the earth. We found out that there was no simulation for such a high pressure accident, since the assumption had always been, that an accident was impossible. If the containment vessel had blown up instead of just punching holes, we would have had no idea what happened. The fuel pool of reactor IV contained nuclear fuel, but the pool had no containment vessel. We worried that the water could dry, but we could not go near due to the high radiation. However, coincidentally, there was extra water due to the delay of the maintenance work that was being done there and so the meltdown was unexpectedly avoided. “I know this is not the words from a politician, but I can only think that God protected us.” Today we still need to cool down the fuel by putting 300 tons of water every day onto it. But the containment vessel has holes, so the water is leaking. We pumped up the water and put it in tanks. But we cannot pump up all the water. It is still not under control today.

Naoto Kan, Former Prime Minister of Japan (Photo:Tsukasa Yajima)
Naoto Kan, Former Prime Minister of Japan (Photo:Tsukasa Yajima)

We are working on Fukushima’s decommissioning. The current plan says it will take 40 years, but I personally think we need more time to finish it.

I thought about the question why this accident happened. There was a chain of the causes. They also lie equally in hardware and software, by software human factors are meant. The average height of the shore line of Fukushima is around 35m. TEPCO lowered 20m of this height and reported how they save the pumping water costs for cooling down the reactors. They put the emergency electricity generators at a low place. This severely failed design caused the accident. These are hardware problems. On the other hand, there were also software problems. In Japan many accidents of this kind are caused by earthquakes, which are often followed by tsunamis. However, this possible situation was not considered. The bureaucrats who are responsible for the security of accident are not specialists for atomic reactors. For example, when I met the responsible person of the reactor accident, I asked the responsible person, “are you a specialist for atomic reactor?” The responsible person answered, “I graduated from the economy department of Tokyo University. I don’t know technical details about the reactor.” The organization for the reactor accident and the organization of the propelling nuclear reactors were the same organization. This chain of problems led to the accident.

Before 3.11 I have always recommended to sell Japanese reactors to other countries. But after 3.11 I completely changed this opinion.

After the accident, we first separated the department of the nuclear safety and the department propelling the nuclear reactors. We also changed the regulation so that it becomes more safety oriented. This basically shut down all the reactors in Japan.

We introduced a law to encourage green energy. We studied the German FIT system.

In the future, I want to abandon the fossil fuel and want to shift to all the sustainable energy in Japan. A research report says that the current human energy consumption is only 1/10000 of energy from the sun to the earth. If each country can support the energy by its own, one of the large international conflict source will be solved. It seems the national security will be better if we could shift to the natural energy. I admire Germany as a forerunner. I heard there are many different opinions in Germany, though I was quite impressed that Merkel changed the German energy policy to be based on the sustainable energy just after a few months after the Fukushima accident. I am disappointed with the current Japanese energy policy since it is not going only towards sustainable energy. However, it was revealed that the nuclear energy is not cheap. Thus, I expect the nuclear energy will be abandoned in this century due to economical reasons. But, there is no guarantee that there will be no other accident before it is abandoned. Let’s not wait until it is too late.

At the end of the lecture, Kan concluded “Fortunately, we could avoid the destruction of the country. I felt there was a protection of God. But, I don’t know whether there will be another protection when the next accident happens. My aim is to abandon nuclear reactors all over the world before the next accident.”

After the lecture, we had a lively question and answer session.

Q: Why is Japan still not able to abandon the nuclear power, even after the accident?

A: According to the opinion polls, a majority of Japanese wants to abandon nuclear power. However, the Japanese business community and the people who depend on nuclear power businesses are still strong. At the end, we need to promote the denuclearization by the election, but the focus of the last election was economy policy, and the LDP, which promotes nuclear power, won the election. Therefore we have not achieved the denuclearization.

Lively discussion with Kan
Lively discussion with Kan

Q: Why do power companies, such as TEPCO, continue to promote the nuclear power even after they faced an accident like Fukushima?

A: The government wanted to promote the nuclear power, the power companies however didn’t. The government gave the power companies the authority to add up to 3% on top of the electricity costs depending on how much they invest. It is a rate-of-return regulation for power companies. In other words, if a power company has higher costs to produce power, their profits become higher. The power company can get more profit not requiring the endeavor of the company. Therefore, the power companies would like to promote the nuclear power since it can increase the profit without any effort.

The power company can abuse the rate-of-return regulation legally. For example, a power company can have an order with deliberately high cost to a general contractor. They can raise the electricity price due to the regulation, so the user must pay this cost. There could be a secret agreement that the general constructor pays back a part of the higher cost. A book recently revealed this mechanism and the pay-back is estimated at around 200 billion yen per year. The power companies use this money to promote nuclear power. Even though the accident cost 10 trillion yen, until now it was mostly covered by the tax. Therefore this situation is quite attractive for the power companies in Japan which are also favored to the many politicians.

Q: How did Japan change after 3.11?

A: I think there were many changes. One thing I would like to mention is the change in court’s attitude. The court did not use not make decisions about the safety, they used to let the experts decide since nuclear power plants are highly technical. Even though this is only true for some members, but they changed their attitude. In the future, I expect that the nuclear energy business cannot sustain due to its high costs and also the emerging of renewable energies. I believe nuclear power plants will be abandoned in this century. However, this is an economical movement and not a political movement. That is unfortunate.

Q: Will the change not happen politically?

A: I think the change might happen from grassroots movements. But they are not seen in the outcome of the national election in Japan. I heard that the German system has more weight for the proportional representation than the Japanese system. Japan uses single-member district method for election. This system has a wasted vote problem. For example, if 10% of people are against the nuclear reactor, these people’s votes are wasted in single-member district method and these 10% people are considered as 0. We need to have enough anti-nuclear people in the Japanese diet, however, Japan has not yet reached so far.

Q: How has information been verified when the accident happened?

A: At the time, critical information had been hidden, many of them are still not publically available. The communication line between TEPCO Tokyo and Fukushima site had been connected for 24 hours. However, only the information chosen by TEPCO was made public. For example, at March 15th, I visited TEPCO and asked the TEPCO officials not to retreat from Fukushima site. The video has been published without voice. TEPCO said the voice was erased by mistake, but I personally don’t believe it. Now a prosecution of the officials is carried out, so I expect more information will come to light.

Q: What kind of person is Yoshida, the general manager, who prevented the accident to become a lot worse?

A: Unfortunately Yoshida, the general manager died of cancer two years after the accident. Whether the cancer is the cause of exposure is unclear. I was able to meet him once just after the accident. I recognized immediately that he was a reliable person.

Q: How have the decisions to evacuate the site or to allow people to return been made?

A: At the time of the accident, the government’s monitoring ability was low and there was a danger that the containment vessel was going to be destroyed. So we decided to evacuate the area within a certain radius having the reactors as its center. Then, we figured out that the distributed radioactive substance depends on the wind. But this took time. Evacuation criteria differed by experts. The current criterion is 1 mSv/y. The number of children being patients is increasing, but some experts say that this is due to our checking method which is strict and makes numbers only looks like they were increasing. Municipalities tend to lower the criterion to make it easier for the people to return, since they want them to return to the area. Basically, we decide according to the experts’ opinions, but I have question this is appropriate.

Q: Why can your party (Democratic Party of Japan) not win the elections?

A: The effect of single-member district election method is strong. Within this system, we always need to get the first position in the district. Therefore, even if the 10% of the people favor our party, it is possible that we do not get a seat in the diet.

After the lecture: Kan with the host and green party politicians

Let’s talk about nuclear waste (10): Appendix 4: Where does the storage years of 100,000 comes from for nuclear waste?

Is the mined Uranium safe?

We have seen the graph of “Radioactivity attenuation of vitrified waste over time.” How long time we need to keep the waste is based on the radioactive level of mined Uranium ore. I wonder if it is save. I could not find information about this. I know that not everything in nature is safe. A venomous snake, poisonous mushroom, volcano gas, … they are all natural, but not always safe. Uranium ore is in nature, but is it safe?

A Wikipedia article entitled “Depleted uranium,” Japanese MEXT (Ministry of Education, Culture, Sports, Science and Technology) stated that the toxicity of depleted Uranium is the same of the Uranium in the sea or rocks [1] (in November, 2002). This doesn’t tell much. I would like to know about the safty of Uranium ore in the first place, then why all of sudden am I talking about depleted Uranium? You might think that I switched subject. Unfortunately, this is the information that I found on the Internet, which is only indirect. I could only find two connected things that Uranium ore has danger similar to depleted Uranium and that depleted Uranium is dangerous. Assuming they are both correct, we could conclude that Uranium ore is also dangerous. Yet I doubt there are many different types of depleted Uranium (density and so on) and many different qualities Uranium ore. I don’t believe all the Uranium ore have exactly the same density of Uranium rocks. I didn’t understand this information completely. Some say depleted Uranium is dangerous and some say it is not. The former say, “it is not dangerous, but it’s a harmful substance, so it must be controlled under the law (US government), and children should not take it (WHO).” Then, Uranium ore from nature is as safe as depleted Uranium (Japanese MEXT), or less safe. You could check this out yourself in Wiki [1]. Personally I cannot judge any risk based on such low quality information. Then my decision can only be to avoid them. Without information, we cannot decide on anything. We need more information.

Also it is not clear that “the corresponding radioactivity of 1t fuel is 1000GBq.” The value is 1GBq/kg (=1,000,000,000 Bq/kg) which is quite large. Common food has a safety threshold at 100 Bq/kg. 1,000,000,000 Bq/kg which does not sound safe at all to me.

Only one thing is certain, nuclear waste needs 100,000 years to get to this 1,000,000,000 Bq/kg state.

Most of the articles about final disposal mentioned this number, 100,000 years, and they usually ask: can we keep it for that long? I think that is a wrong and meaningless question, because even if we can manage nuclear waste for 100,000 years, it is apparently not safe. As far as I can understand, Uranium ore is not safe and 100,000 years is too short of a time for final disposal.


  1. Wikipedia ja, Depleted uranium (劣化ウラン): Health considerations (in Japanese: 医学的危険性の主張と反論),, (Online; accessed 2014-12-21)


Thanks to Daniel S., Enzo C., Carsten W., and Nikolaus B. for the proof reading and suggestions for the English version.